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I. INTRODUCTION 

In order to control a nuclear reactor properly, it is 

necessary to know the response of the reactor to reactivity 

perturbations. Because of this, the study of reactor re

sponse has been an integral part of the developing reactor 

technology, and it is the topic of this thesis. 

The response of a reactor is usually given in terms of 

the reactor transfer function (30, 38). The transfer func

tion of any system is defined as the Laplace transform of 

the output divided by the Laplace transform of the input. 

For a reactor, the input is a reactivity perturbation and 

the output is usually taken to be the change in the neutron 

flux. Because it lends itself well to both analytical and 

experimental treatment, one of the most common methods of 

determining the transfer function of a reactor is to intro

duce into the reactor, while it is in a steady-state con

dition, a sinusoidally varying reactivity perturbation, 

usually as a variation in the absorption cross section, and 

then to determine the resultant flux change. When this is 

done, it is found (38) that the flux also varies sinusoi

dally with the same frequency as the input, but with a dif

ferent amplitude and phase. This frequency response is the 

magnitude and phase angle of the reactor transfer function. 

A reactor concept which is becoming increasingly im

portant in the light of recent developments, such as the 



www.manaraa.com

2 

consideration being given to the idea of clustered nuclear 

rocket engines, is the coupled-core nuclear system. A 

coupled-core reactor has two or more distinct fuel regions 

or cores, and they are coupled in the sense that some of the 

neutrons produced in one core will diffuse to another core 

and cause fissions there and vice versa. As Avery (3) has 

pointed out, this concept could be applied to the separate 

fuel elements in any reactor, but it is usually advantageous 

to do so only when each core itself has an appreciable mul

tiplication factor and is physically separated from the 

other cores by a non-multiplying medium. Intuitively, it 

can be seen that the frequency response of a coupled-core 

reactor might be different from that of a single-core re

actor, and it is the purpose of this thesis to propose a 

method for determining that response. 

In order to determine the frequency response of a re

actor analytically it is necessary to develop a reasonably 

accurate model of the reactor. For many reactors, the 

spatially independent or point-kinetics equations (30) give 

an adequate representation of the flux, and when the first 

transfer function measurements were made in 1952 by Harrer 

et al. (21) on the CP-2, good agreement was obtained with 

their point kinetics model at the low frequencies (< 20 

rad/sec) they investigated. However, as reactors have be

come larger and more complex, it has been necessary to 
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include spatial effects when developing a reactor model. 

Some of the early work done in this area was that of Henry 

and Curlee (22) who proposed, in 1958, to handle spatial 

effects by approximating neutron shape functions with a 

series of time-independent calculations (a forerunner of 

the time-synthesis technique). Since then, several dif

ferent techniques have been proposed to approximate the 

spatially-dependent flux, examples of which are given by 

Kaplan (26), Kaplan et (28), and Lewins (33). 

By far the most popular method of approximating the 

spatially-dependent flux has been the modal analysis ap

proach. In this method, it is assumed that the flux can 

be approximated by the sum of a series of products of space-

dependent expansion modes and time-dependent coefficients. 

The problem is then to select appropriate space modes and 

solve for the time coefficients. Many different space modes 

have been proposed, but they can all be divided into two 

basic types : the orthogonal modes, which are eigenfunctions 

of the steady-state problem, and the non-orthogonal modes. 

The orthogonal modes include the Helmholtz modes (16, 17), 

the lambda and omega modes (28), and the natural modes (25). 

The non-orthogonal modes include the Green's function modes 

(15) and the time-synthesis modes (27, 29). In general, it 

is arbitrary which type of space mode is used, but one type 

of space mode may be better suited for a particular problem 
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than another type; that is, the series of one type may con

verge faster than that of another type. 

As the different reactor models have been developed, 

they have been used to determine the spatially-dependent 

frequency response. The first attempt to determine this 

response was made in 1948 by Weinberg and Schweinler (39) 

who investigated only very low frequencies. Since that 

time, in most of the analytic work done in this area, the 

diffusion equations have been used as the model (32, 34), 

with approximate solutions to them being obtained. Cohn 

et al. (12) have proposed a complex formulation and have 

used it with a time-synthesis approach; Hoshino et al. 

(24) have formulated a method based on the moda] expansion 

technique; and Foulke and Gyftopoulos (18) have used the 

natural mode approximation to find the response of a model 

of the heavy-water NORA reactor. The only published ex

perimental results of frequency response measurements are 

those of Hansson and Foulke (20) who also investigated the 

NORA reactor. 

The first model for a coupled-core reactor vas pro

posed by Avery (3) in 1958. He wrote a point-kinetics equa

tion for each core which included coupling terms to account 

for the diffusion of neutrons from core to core. A somewhat 

similar technique was proposed by Baldwin (4) who wrote a 

one-group diffusion equation, including coupling terms, for 
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each core. Much of the work done on coupled-core reactors 

(6, 36) has utilized the idea of treating each core as a 

point, but recently, Yasinsky (42) has proposed a method for 

finding spatial effects by utilizing a time-synthesis ap

proach . 

Little work has been published on the frequency re

sponse of coupled-core reactors. Pluta (36), utilizing 

Avery's method (3), investigated the response at low fre

quencies (< 10 rad/sec)7 Seale (37), using Baldwin's method 

(4), investigated a three-core system for frequencies up to 

lo'^ rad/sec; and Carter and Danofsky (9) made the first 

study of the spatially-dependent frequency response by ap

proximating the flux with Green's function modes. 

The purpose of this thesis is to present a method for 

determining the spatially dependent frequency response of a 

coupled-core reactor. The particular reactor chosen for 

study is the Iowa State University UTR-10 (1), a description 

of which is given in Appendix A. Frequency response work 

which has been done for the UTR-10 includes that of Danofsky 

and Uhrig (14), Betancourt (7), and Merrit (35). To find 

the spatially-dependent frequency response, Betancourt used 

the natural mode approximation and Merrit used the Green's 

function mode approximation developed by Carter (8). The 

results obtained by Betancourt and Merritt will be compared 

to the results obtained here. 
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The method presented here consists of casting the two 

group diffusion equations into the form of linear differ

ential equations which can be solved exactly by the use of 

the Green's function technique (13, 23). In order to do this, 

it is assumed that the reactor power is low enough so that 

no feedback (temperature, etc.) occurs. This method is sim

ilar to that used by Banks and Blackshaw (5) and Kobayashi 

and Nishihara (31) to obtain steady-state flux distributions. 

This method is considered to be an improvement over the 

modal analysis techniques since it does give an essentially 

exact solution to the diffusion equations. 
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II. THEORY OF THE GREEN'S FUNCTION SOLUTION 

TO A DIFFERENTIAL EQUATION 

This section presents a review of the theory of the 

Green's function solution to a differential equation which 

is used in the following sections to solve the diffusion 

equations. This review is based on material in Courant and 

Hilbert (13) and Hildebrand (23). 

The problem to be considered is solving the differen

tial equation 

Ly(x) + ffi(x) = 0 , (1) 

where L is the linear, self-adjoint, differential operator 

^ + 9 = + # A + q ' '2) 

together with homogeneous boundary conditions over the re

gion of interest—that is, in the region a < x < b, 

y(a) = y(b) = 0. The assumptions are made that in this 

region p, and q are continuous functions of x and that 

p is not zero. 

If a unit perturbation is introduced at some point e, 

where a < e < b, the effect of that perturbation at some 

other point x can be denoted as G(x,e). Thus, the effect 

at X of the continuously distributed perturbation ffi can be 

considered to be the superposition of the effects of an 

infinite number of point perturbations, and the desired 
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solution will have the form 

b 
Y(X)  =  G(x, e)a5(e)d£ . (3) 

a 

The function G(x,e) is called the Green's function, and for 

a given number e, is given by G^(x) for x < e and by GgCx) 

for X > E. The Green's function satisfies the following 

conditions : 

1. G(X,e) satisfies the equation LG = 0; that is, 

LGj^ = 0 when x < g and LG^ = 0 when x > e. 

2. G(X,£) satisfies the prescribed homogeneous boundary 

conditions; that is, G^(a) = 0 and Ggfb) = 0. 

3. G(x,e) is continuous at x = e; that is, G^fe) = 

4. The first derivative of G(x,e) has a discontinuity 

of magnitude - l/p(e) at x = e; that is, 

dG«(e) dG,(e) 

dx dx 
= -l/p(e). 

The four conditions listed are used to determine G. Let 

c^u(x) be a nontrivial solution to LG = 0 which satisfies 

the boundary condition at x = a; that is, u(a) = 0. Also, 

let CgVtx) be a nontrivial solution to LG = 0 which satisfies 

the boundary condition at x = b; that is, v(b) = 0. c^ and 

Cg are constants. The first two conditions are then satis

fied if G^ = Cj^u(x) and G^ = c^vtx), so that 
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c^u(x) , X < e 

G = [  (4)  

CgVfx) , X > e 

and are determined by using the last two conditions. 

By Condition 3 

Cj^u(e) = CgVte) or c^vie) - c^u(e) = 0 . (5) 

By Condition 4 

=2#^ - =1^ = -:/p(e) . (®> 

Equations 5 and 5 possess a unique solution if 

u(e) v(e) 

du(e) dv(E) 
dx dx 

= u(s)^ - v(e)^ / 0 

This determinant, called the Wronskian, will not be zero 

unless u(x) and v(x) are linearly dependent. If that is 

the case, a Green's function in the normal sense will not 

exist. For this exceptional case a generalized Green's 

function can be defined, but since it is not relevant to the 

development here, it will not be discussed further. The 

value of the Wronskian for the normal case in which u(x) 

and v(x) are linearly independent can be found by noting 

that both u(x) and v(x) satisfy Ly = 0. Therefore, 

^(j^) + qu = 0 
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and 

dx^^dx 
^ (P^) + qv = 0 

Multiplying the second equation by u and the first equation 

by V and subtracting the results yields 

- -S' ] = ° • 

Thus, 

^ -

where A is a constant. Thus, the value of the Wronskian is 

u(s)^-v(e)^ - ^ . (7) 

With this relationship, the solutions of Equations 5 and 6 

become 

=1 = - - ' =2 - - A 
V(E) ^ _ U(f-) 
A 

Thus, Equation 4 becomes 

G(x, e )  =  [  

u(x) V(F,) 
A 

U(F.) v(x) 
A 

, X < e 

, X > e 

[in an actual problem for the solution of a Green's function, 

u(x), v(x), and p(x) will be known; so that A can be evalu

ated from Equation 7.] 

Using the definition of the Green's function as given 



www.manaraa.com

11 

above, it can be shown, using only the elementary rules for 

the differentiation of an integral with respect to a param

eter, that Equation 3 is completely equivalent to Equation 1. 

Thus, Equation 3 is the solution of Equation 1 and satisfies 

the boundary conditions. 

This method of solving a differential equation by using 

the Green's function is not limited to second order equations. 

An analogous procedure can be used in solving a boundary-

value problem consisting of a differential equation of order 

n and relevant homogeneous boundary conditions. Considering 

the equation 

Ly(x) + ffi(x) = 0 , (8) 

"tlfl where now L is an n order differential operator, the cor

responding Green's function, 

G^(x) , X < e 

G(x,e) = [ , 

GGFX)  ,  X  >  E  

satisfies the following conditions: 

1. For X < e, G^ satisfies the equation LG^^ = 0. For 

X > e, G2 satisfies the equation LG^ = 0. 

2. Over the interval (a,b), satisfies the prescribed 

homogeneous boundary condition at a, and G^ satisfies 

the corresponding condition at b. 
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3. G(x,e) and its first n-2 x-derivatives are con

tinuous at X = E. 

4. The (n-1)^^ x-derivative of G(x,e) has a discon

tinuity of magnitude -l/s(x) at x = e, where s(x) 

is the coefficient of d^/dx^ in L. 

These are the generalized conditions for a Green's func

tion, and it is readily seen that those conditions given 

previously are merely the application of these to a second-

order equation. Under these conditions the solution to Equa

tion 8 can again be written as 

A special case of particular interest is when the driv

ing function @(x) is a delta function; that is. 

y(x) G(x, e)fl}(e)de . 
a 

ffi(x) = 5(x-x') , a < x' < b 

In this case the solution. Equation 3, becomes 

. b 
y(x) = G(x, e)ô (e-x')de = G(x,x') (9) 

a 

since 

00 X =  X b 

and b(x-x')dx = 1 

a 

6(x-x') = [ 

0 , X /  X 
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Thus, if ffi(x) is a delta function, the desired solution 

is identical with the Green's function, and the integra

tion step is bypassed completely. 
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III. APPLICATION OF THE GREEN'S FUNCTION THEORY 

TO A SLAB REACTOR 

In utilizing the theory of the Green's function to de

termine the spatially dependent frequency response of a re

actor, a bare, homogeneous, semi-infinite, slab reactor was 

investigated first. One-group theory, with one group of 

delayed neutrons, was used to keep the model simple. Table 

1 (2) contains the critical nuclear parameters for this re

actor. 

Table 1. Slab reactor parameters 

D(cra) Za(cm 1)  Zf(cm 1)  Neutron 
velocity 
(cm/sec) 

T(cm^) 

0 .2712  0 .09235  0 .0591  2 .2  X 10^ 42  

Thickness 
of slab 
(cm) 

P X (sec~^) V B^(cm~^) 

30  0 .0064  0 .08  2 .5  0 .010956  

With these parameters the reactor is exactly critical, which 

is very important; because it was found that, especially at 

low frequencies, the frequency response of this reactor (and 

also the UTR-10 model) is very sensitive to criticality. 
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A sinusoidal variation in the absorption cross section 

was assumed to occur in a plane at the exact center of 

the reactor. In an actual experimental set-up this could 

be approximated by using a small neutron-absorber oscillator. 

The basic diffusion equations are 

2# - Zg# + vEf (l-p)e"® ^^0 + XCs~® ^ It (10) 
dx 

- \C = , (11) 

where the symbols have their usual meanings. The term 

_g2 
e~ accounts for the leakage of fast neutrons. With a 

small perturbation in 2^, 

Za = - AXa - <12a) 

then 

and 

0 = 0Q + A0 (12b) 

C - + AC . (12c) 

^ao' ^o' ^o the steady-state values. Substituting 

Equations 12 into Equations 10 and 11, noting that the steady-

state parts of the equations sum to zero, and assuming the 

product ASaA0 is negligibly small, leads to the resultant 

equations 
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D^0 - + V2j(l-|3)e ^^0 + XaC = ̂  ̂  

(13) 

vZfpA0 - XAC = . (14) 

As stated, the perturbation AS was assumed to be 

sinusoidal and to occur in a plane. This can be expressed 

mathematically as 

= lim ̂  {Ui(x-[x'-y])-U2(x-[x'+y])]|AZa|ej%^ , 
Y-vo ' 

where and are unit step functions, 

x' = location of oscillator in the reactor, 

Y = small unit of length, 

= (2^) (aZ^) which is the total absorption prob

ability of the oscillator (39), 

CO = frequency of oscillator, 

and 

3  — V—1 •  

As Y approaches zero the expression 

•^{Ui(x-[X'-Y]) - U2(X-[X'+Y])j 
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becomes identical with ô(x-x')(41); therefore 

= Ô (x-x') . (15a) 

Thus, 

A0 = A0(x,cû) e^"^^ (15b) 

and 

AC = AC(x,w)e^^^ , (15c) 

where A0 and AC are the complex amplitudes of A0 and AC 

respectively. 

After substituting Equations 15 into Equations 13 and 

14 and dividing out the common factor e^^^, the resultant 

equations are 

2 ^ 2 
]>^A0 - Zg^A0 + 6(x-x') |AZg|0Q + vZf(l-p)e~® W 
dx 

2 
+ XACe"® = ^A0 (16) 
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vEfPA0 - \AC = jcoAC . (17) 

Solving Equation 17 for AC and substituting into Equation 

16 yields 

J 2 A 2^ 1 A2] 10 
-̂ A0 + b; ;a0  +  —#—-b{x -x ' )  = 0 , (18) 
dx^ ^ ^ 

where 

= At-Zao + . 

Equation 18 has the same form as Equation 1 with the 

driving function 5D equal to 

D 

Thus, the solution for a0 can be obtained by the Green's 

function method; and since E is a delta function, the solu

tion is 

IAÊ 10 
A0 = 5—%(x,x') , (19) 

where G is the Green's function. 

To obtain the Green's function it is necessary to apply 

the four conditions listed in Section II. Thus, from the 

first condition 

2 
+ B^G = 0 . (20) 

dx^ " 
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The solution to Equation 20 can be obtained by using the 

ordinary techniques for solving a differential equation (41) 

Thus, 

j B X -j B X 
Gi = A^e + A^e , X < x' 

j B X - j B X 
®2 ~ "^3® ^4® , X > X' . 

The are determined by applying the remaining conditions 

on the Green's function; that is, 

= 0 at X = 0 , 

G2 = 0 at X = 30 cm , 

Gi = G2 at X = x' = 15 cm , 

and 

dG« dG, 
15r - IbT = -1 at x = X' 

since p(x') = 1. These conditions lead to a system of four 

simultaneous, algebraic equations in the A^ from which the 

values of the A^ can be found. Thus, the solutions for 

are (from Equation 19) 

A0 = + Aje for x < x' (21a) 
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Since the solutions for ̂ 0 (Equations 21) are continuous in 

X, it is possible to find the frequency response at any point 

in the reactor. Since is complex, it can be written as 

^0 = a + jb, where a and b are real numbers. With this defi

nition, the magnitude or gain of the response in decibels is 

Mag. = 20 log^^Va^ + b^ , (22a) 

and the phase angle in degrees is 

Phase = (tan~^ ̂ ) . (22b) 

In solving for ̂ 0 it is necessary to obtain the square 

2 2 root of the complex number B , where B can be written as 
mm 

c + jd [c and d are real numbers]. The method used was that 

of Churchill (10); that is, 

B^ = Jr[cos® ^2^^^ + j sin^—, k = 0,1, 

where 

r = Jc^ + d^ and 0 = tan~^ ̂  

This method was used because it is more accurate, especially 

at low frequencies, than the subprogram for obtaining complex 

square roots available from the computer. 

The results obtained for the frequency response of this 

slab reactor are shown in Figures 1 and 2. Although some 

space dependence can be seen, many similarities are evident 
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Figure 1. Magnitude of frequency response in slab reactor 
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Figure 2. Phase of frequency response in slab reactor 



www.manaraa.com

22 

between these results and the space independent case. The 

transfer function as derived from the point kinetics equa

tions is (38) 

n^(jco + \) 

jcùA( jco + p/A) 

where A is the neutron lifetime. For this reactor, A is 

4.76 X 10"^ sec (2). A magnitude plot of the space inde

pendent transfer function would indicate break frequencies 

at X and p/A. For this reactor, X = 0.08 and j3/A = 134 

which agree very closely with the break frequencies in the 

results shown. In fact, below a frequency of about 500 

rad/sec these results are almost identical with the space 

independent case which is as expected. Similarly, the phase 

angle response is almost identical with the space independent 

response below 500 rad/sec. The space dependence of the re

sults is evident mostly in the difference in the response 

at the position of the oscillator and at all other positions. 

The gain at the position of the oscillator decreases much 

less rapidly with increasing frequency than at the other po

sitions, and the phase angle at the oscillator position 

asymptotically approaches -45° with increasing frequency 

whereas at the other positions the phase angle continuously 

decreases. This phase angle response at high frequencies 

for all positions is the greatest departure from the space 
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independent case in which the phase angle asymptotically 

approaches -90° at high frequencies. The difference in 

the response at the oscillator position is probably due to 

a resonance effect in which the effect of the neutron per

turbation is being reflected back to the source of the per

turbation. The frequency response is symmetric about the 

center of the reactor as expected. 
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IV. APPLICATION OF THE GREEN'S FUNCTION TEIEORY 

TO THE UTR-10 MODEL 

A. Description of UTR-10 Model 

In developing a model of the UTR-10 reactor, some sim

plifications were made, but it is felt that the results are 

still representative of the actual UTR-10. Danofsky and 

Uhrig (14) and Merritt (35) have shown that the flux tilt 

in the UTR-10 has a negligible effect on the frequency re

sponse; therefore this model was developed with no flux 

tilt, which greatly simplified the calculations. The two-

group diffusion equations with one group of delayed neutrons, 

Equations B.l - B.3 of Appendix B, were taken as the basis 

for this model. In using these equations, it is assumed that 

there is no absorption of fast neutrons and only slow neu

trons cause fissions. A one-dimensional analysis was per

formed, but the transverse buckling was used to account for 

the neutron leakage through the top, bottom, and two sides 

of the reactor. The value of the transverse buckling has 

been found by Merritt (35), who made a horizontal and verti

cal flux map through a core tank, extrapolated the fluxes to 

zero, and obtained the buckling in each direction by assuming 

the flux obeyed equations of the form 

0(y) = sin B^y 

0(z) = A2 sin BgZ 
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The total transverse buckling, which is the sum of the y and 

z components, was then found to be 

bI = = 0.00216 cm~^ . 
t y z 

Figure 3 shows the one-dimensional representation of the 

UTR-10 which was used for this analysis. The oscillator po

sitions, which correspond to possible access points in the 

UTR-10, are as follows: 1) 12 cm from the south core tank 

in the south reflector, 2) in the center of the south core 

tank, and 3) in the center of the coupling region. The de

tector locations are positioned in all models used in this 

study so that A and E are 20 cm from the south and north core 

tanks respectively and B, C, and D are located in the center 

of the south core tank, coupling region, and north core tank 

respectively. 

Table 2^ contains the critical, two-group, nuclear 

parameters for this model of the UTR-10. 

B. Derivation of Green's Function Solution 

Under the assumptions that the reactor is operating 

initially in a steady-state condition at a very low power 

so that there are no feedback effects and that a localized. 

^Danofsky, R. A., Ames, Iowa. Results of reactor 
analysis. Private communication. 1969. 
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Table 2. UTR-10 reactor parameters 

Reactor Region 
parameter south 

reflector 
south 
core 

coupling 
region 

north 
core 

north 
ref lecto: 

Dp (cm) 1.015 1. 23 1.015 1. 23 1.015 

Dg(cm) 0.840 0. 1894 0.840 0. 1894 0.840 

S^(cm~^) 0.00275 0. 0257 0.00275 0. 0257 0.00275 

S^(cm"^) 0.00024 0. 09079447 0.00024 0. 09079447 0.00024 

o
 
o
 0. 122 o

 
o
 

0. 122 o
 

o
 

Vp(cm/sec) 

Vg(cm/sec) 

4.4 X 10 

2.2 X 10~ 

8 

X (sec~^) 

0.0064 

0.08 

sinusoidal perturbation in the absorption cross section is 

introduced into one core. Equations B.20 - B.23 of Appendix 

B are obtained. This case corresponds to having the oscil

lator at position 2. 

Thus, to solve for the flux changes in the north core 

= 0 since x / x" ] , 

the relevant equations are 
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2 
72 - 4f^FÎ + «lAÎ^Sf = ° <23) 
dx 

d^ w t,2 

dx 

where 

26«<Sf - = 0 , (24) 

Xsf = D^'^afe + %' ' 

H 

and 

H 

1 = . 

. M 
2 " "Sf 

(See Appendix B for further definitions.) Equations 23 and 

24 form a simultaneous set of differential equations which 

can be solved by ordinary techniques (41) as shown below. 

Thus, solutions of the form 

= Ae^^ (25a) 

(25b) 

are assumed. Substituting Equations 25 into Equations 23 

and 24 and dividing out the common factor e leads to the 
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following set of algebraic equations: 

(a^ - K^f)A + H^A' = 0 (26) 

H^A + (a^ - Kgg)A' = 0 . (27) 

Non-trivial solutions for A and A' will exist only if the 

determinant of the coefficients of Equations 25 and 27 is 

zero; that is. 

«2 G^-Ksf 

Therefore, 

= a * -  +  K^ f K s f  "  « A  = °  

= l/2[(K^f + K2j) + V(X#f + Kgf'^ - , 

and the four values of a are: 

: 1/2 
= [ 1/2 + K^^+1/2 + ̂ Sf ) ̂ 

( 2 8 )  

1/2 
a3 = [l/2(K^g + K^^-V2V(K^f+K^f)^ -

(30) 

oc/ — —ao (31) 
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Thus, the solutions. Equations 25, become 

a,x a^x a^x a.x 
= Aj^e ^ + Age + A^e + A^e (32a) 

A0sf - . (32b) 

It may be shown that only four of the eight constants in 

Equations 32 are independent. 

Equations 32 are the complete and most general solu

tions of Equations 23 and 24, but permissible solutions are 

CCTX ^ OCIX 
also A0pf = A^e ^ and A^sf ~ -^1® * Substituting these 

into Equation 23 (or Equation 24) and dividing out e^^* 

yields 

(aJ - = 0 . 

Defining a coupling coefficient 

s -
^ ~ -^1 ' 

then 

s  _ - ° 1  
1 - % 

and similarly 

K^f - CCi 
^i ^ = 1,2,3,4. (33) 
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The coupling coefficients are not arbitrary since they de

pend on the reactor parameters. Therefore, the solutions. 

Equations 32, become 

a-,x a^x a^x a ,x 
A0pf = A^e + Age + A^e + A^e ^ (34a) 

a,x a^x OgX a,x 
A0gg = S^A^e + SgA^e ^ + S^A^e + S^A^e ^ . (34b) 

It can be noted in passing that inspection of Equation 33 

reveals that = S2 and = S^. 

To solve for the flux changes in the graphite moderator 

regions, the relevant equations are (from Appendix B) 

„2 
- 'W^Pli. = ° '35) 

dx 

"w „2 

dx 

where 

K? = —Ï—(y + 
^ Dpm rme v^ 

_  1  ( y  I  j ^ \  
Sm Dg^^^ame Vg^ ' 

and 

»3 = n 
^rm 

Sm 
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Equation 35 can be solved directly using the method of 

Glasstone and Edlund (19). Thus, 

X 
= E^e + E^e . (37) 

The solution for the homogeneous part (first two terms) of 

Equation 36 has the same form as Equation 37, and thus, the 

general solution to Equation 35 is 

A K_ X —K„ X A 

A0sm = - <38) 

where is a coupling coefficient. can be evaluated 

using a procedure similar to that used to evaluate 

as is shown below. 

Equation 38 is the complete and most general solution 

to Equation 36, but a permissible solution is 

Substituting this into Equation 36 yields 

By Equation 35, 

2 

~ ^m^Fm ' 

therefore Equation 39 becomes 

=5K|>Fm - = » ' 

Thus, 
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=5 = - K2 • (4°) 
Sm 

depends on the reactor parameters, so it is not arbitrary. 

The solutions in all three moderator regions have the 

same form as Equations 37 and 38, but they are not identical. 

To account for their differences, the solutions for these 

three regions can be written as follows: 

Solutions for south reflector: 

X -K^ X 
A0p^ = E^e^"> + Ege (41a) 

A^Sra = + SgEge + E^e . 

(41b) 

Solutions for coupling region; 

X 
= ^1® + C^e (42a) 

60sm = + SgC^e + Cje"®'"'' + C^e . 

(42b) 

Solutions for north reflector: 

K ^ x  -K^  X  
A0pm = ^1® + Fge (43a) 

A ŜM = + F^e . 

(43b) 
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To solve for the flux changes in the south core, the 

relevant equations are (from Appendix B) 

. 2  .  

dx 
2'^^Ff ~ ^f^^Ff •*" %^^Sf " ° (44) 

—A0sf - + HgAgfpf + 6 (x_x' ) 
dx Sf 

0 . 

(45) 

Kpf, Kgg, and have the same meanings here as they do 

in Equations 23 and 24. The values of lAS^fl are 

ar b i t r a r y  ( p r o v i d i n g  | i s  small ) ;  t h e r e f o r e  t h e y  c a n  b e  

adjusted so that 

AS^fl0Sof 

°Sf 
= 1 

Thus, Equations 44 and 45 can be rewritten as 

H, 
dx 

L ^2 
_dl „2 

0 o' 

4" 

b (x-x' ) 0 

Equation 46 has the same form as Equation 1 with 

i2 

L = 

.âl x,2 

H, 

Hn 

d l  „ 2  
2  ~  K g f  

dx 

(46) 
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y = 

and 

® = 

0 

6(x-x') 

Thus, it should be possible to obtain a Green's function 

solution to Equation 45, and since ® is a delta function, 

the solution should have the same form as Equation 9; that 
A A 

is, = Gp and A0g^ = Gg. 

Proceeding in a manner analogous to the solution of the 

slab reactor, the first condition on the Green's function 

requires 

r ̂ 2 

dx' 
- 4f 

2 " ̂ Sf 
dx 

(47) 

Equation 47 is identical to the set. Equations 23 and 24; 

therefore the solutions will have the same form as Equations 

34. Thus, for x < x' 

Opi = = "l® + U^e + U^e + U^e 
04% 

(48a) 
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" CC-1 ̂  G 9^ CCCC/X 
°S1 = Al^sf = + SjUje + SjUje + S,U,e 

(48b) 

and for x > x' 

a-jX aoX a/X 
Gp2 = A0Ff = Vj^e + V^e ^ + V^e ^ + V^e ^ (49a) 

CC -] X CC gX CC-jX CC/X 
°S2 = = s^Vj^e + Sj V e + SjVje + s^v^e 

(49b) 

The continuity conditions on the fluxes and currents 

at the various region interfaces have the effect of con

tinuing the left and right hand parts of the Green's func

tion out to the reactor boundaries, which allows the second 

condition on the Green's function to be fulfilled. For ex

ample, going from the south core to the south reflector and 

then to the south boundary yields the following relationships; 

At X = x^ (see Figure 3) 

or 

and 

^Fm dx ~ ^Ff dx 
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or 

Gg^l '^4^1 

Similar expressions hold for A0g^(%) and A0gg(ll)' 

At X = 0, 

A0pm'^> = ° 

or 

E^e + E^e = E^ + Eg = 0 . 

A similar expression holds for A0g^(l)• Analogous expres

sions hold at the region interfaces in going in succession 

from the south core to the coupling region to the north core 

to the north reflector to the north boundary. Thus, the 

second condition on the Green's function is fulfilled; since 

in the south reflector, the Green's function is represented 

by A0p^(I) and A0g^(I) which go to zero at x = 0 and in the 

north reflector, the Green's function is represented by 

^^FmCV) which go to zero at x = x^ = 285cm. 

The third condition on the Green's function requires 

that at X = x' (oscillator position 2) 

Gpi(x') = Gp2(x') 
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and 

«SI ' = Ggglx') . 

The fourth condition on the Green's function requires 

that at X = x' 

and 

dGpgCx') dGp^(x' ) 

dx ~ dx 

dGggCx') dGgj^(x') 

= 0 

dx dx 

These relationships are based on the intuition that the fast 

flux should not have a discontinuity in its first derivative 

from a perturbation in the slow absorption cross section, 

and this is proven to be correct in Appendix C which shows 

that this formulation is equivalent to the Green's function 

solution of the fourth-order differential equation resulting 

from the combination of the two-group diffusion equations. 

Thus, in the set of solutions for the flux changes in 

the five regions of the reactor (Equations 34, 41, 42, 43, 

48, and 49), there are 24 independent and undetermined con

stants, but there are also 24 conditions (Green's function 

and continuity conditions) available to solve for them. 

Therefore, each of these constants may be determined uniquely 

so that the solutions can be obtained for any point in the 

reactor. 
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Analogous to the case of the slab reactor, the solu

tions and are complex; therefore they can be written 

as 

A0F = 

A0S = ^2 + jbg . 

Thus, the magnitude of the response in decibels is 

Fast Mag. = 20 log^^^Ja^ + b^ (50) 

Slow Mag. = 20 log^Q^a^ + b^ , (51) 

and the phase angle in degrees is 

Fast Phase = -^^(tan"^ —) (52) 
1 

Slow Phase = ^^^(tan~^ —) . (53) 
TT ^2 

C. Frequency Response Results 

The frequency response of the slow group was obtained 

at detector positions A, D, and E with the oscillator at 

position 2. The relative magnitude of the response is shown 

in Figure 4 and the phase in Figure 5. Also plotted in these 

figures are the results obtained by Merritt (35) for this same 
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case, using the Green's function mode approximation. Merritt 

has normalized his results (both magnitude and phase responses) 

to single curves at low frequencies. For the results obtained 

here it was decided to show the spread of the response curves 

at low frequencies; therefore the only normalization performed 

— 2 
here was to set the magnitude response at 10 rad/sec for de

tector position A to 0 db. 

As in the case of the slab reactor, these results at 

low frequencies are similar to the space-independent model, 

as expected. The phase angle approaches -90° at low fre

quencies and the magnitude response shows a break at 

\(0.08 rad/sec) in accordance with the space-independent 

model. 

Danofslcy and Uhrig (14) have shown that the break fre

quencies of the magnitude response of the UTR-10 reactor 

still occur at \ and p/A. Since p/A for the UTR-10 is in 

the 30-60 rad/sec range, the results here are in excellent 

agreement with that analysis. 

In comparing these results with those obtained by 

Merritt (35), there are several noticeable differences. 

At low frequencies, the phase angle obtained from the 

Green's function mode approximation decreases to less than 

-110° instead of approaching -90°; and at high frequencies, 

with the possible exception of position D, the phase angles 

are decreasing steadily. The results obtained here indicate 
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that the phase angles are approaching asymptotic values 

at high frequencies, which is the expected behavior (35). 

The results obtained by Betancourt (7) for this case, using 

the natural mode approximation, do not show as great a phase 

angle decrease at high frequencies as the Green's function 

mode approximation, but neither do they show the phase angles 

approaching asymptotic values. 

The magnitude response determined by the Green's func

tion mode approximation shows a sink effect at about 2000 

rad/sec at positions D and E, with the sink at position E 

being more pronounced. The results obtained here at those 

two positions show inflection points in the response curves 

at that same frequency, with the inflection at position D 

being more pronounced. The results obtained by the natural 

mode approximation do not show a sink or inflection point 

in the magnitude response curve for position D, but they 

do show a sink effect at slightly less than 1000 rad/sec in 

the response at position E. The possibility that the sink 

phenomenon actually exists is not without precedent, as is 

pointed out by both Betancourt (7) and Merritt (35), but 

Betancourt also acknowledges that the modal approximations 

may have convergence problems at these frequencies. 

However, although the three methods are not in good 

agreement, they all do predict some sort of unexpected be

havior; and thus, it is likely that some unexpected 
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phenomenon is occurring at these frequencies. Merritt (35) 

has suggested, as a possible explanation, that the fast group 

perturbation from the south core is thermalized in the north 

core; and at a frequency of about 2000 rad/sec (calculated 

from the perturbation transit time from the south core to the 

north core), is 180° out of phase with the slow group pertur

bation propagated to the north core. This would have a partial 

cancellation effect (complete cancellation could occur only if 

the amplitudes were exactly the same) on the magnitude response 

and could account for a sink; since as the frequency increased, 

the thermalized fast group perturbation would become less out 

of phase with the slow group perturbation, which would have an 

additive effect on the magnitude response. However, as Merritt 

(35) has pointed out, the actual formation of a sink would re

quire that the amplitudes of the thermalized fast group per

turbation and the slow group perturbation be very nearly the 

same. If there is a significant difference in these ampli

tudes, the effect would only be a slight flattening of the 

magnitude response curve, which is the result predicted in 

this study. 

Although a detailed analysis of the frequency response 

in this frequency range would be desirable, it is beyond the 

scope of this work. 
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V. PARAMETRIC ANALYSIS OF A COUPLED CORE REACTOR 

Using the UTR-10 model (as described in Section IV) as 

a basis, the effects of various parameters on the frequency 

response of a coupled-core reactor were investigated with 

the Green's function solution technique developed in Section 

IV. The parameters chosen for study were 1) oscillator and 

detector position, 2) the effect of neglecting delayed neu

trons and considering 1/v^ to be negligibly small, 3) neutron 

energy group, 4) neutron group speeds, 5) the delayed neutron 

fraction p, and 6) coupling region width. These parameters 

were chosen because it was felt that their effects might be 

important. Merritt (35) has investigated the effects of some 

of these parameters using the Green's function mode approxi

mation, and where possible, comparisons will be made between 

his results and those obtained here. 

A. Effect of Oscillator and Detector Position 

In the UTR-10 reactor there are three potential oscil

lator positions of particular interest, as shown in Figure 

3. As noted before, these positions are 1) 12 cm from the 

south core tank in the south reflector, 2) in the center of 

a core tank (the south core tank was used), and 3) in the 

center of the coupling region. 

The spatial dependence of the frequency response was 

investigated by determining the response at the five detector 
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locations A-E shown in Figure 3. As noted before, A is 20 

cm from the south core tank in the south reflector, E is 20 

cm from the north core tank in the north reflector, and B, 

C, and D are in the center of the south core tank, coupling 

region, and north core tank respectively. 

Figures 6-11 show the magnitude and phase of the fre

quency response at detector positions A-E with the oscillator 

at positions 1-3. Inspection of these figures reveals that 

in all cases the response at frequencies below ~ 10 rad/sec 

is nearly identical with that of the space-independent model. 

Also noticeable for all cases is the resonance effect in the 

magnitude and phase when the oscillator and detector are lo

cated at or near the same point. This effect has also been 

found in conventional reactors (20). Inspection of the mag

nitude response curves also shows that at positions far from 

the oscillator the value of the p/A frequency break is more 

consistent (~ 50 rad/sec) and greater than at positions 

close to the oscillator. This behavior has also been noted 

in the analysis of conventional reactors (34). 

With the oscillator at position 1, the magnitude re

sponse curves at detector positions D and E show the same 

type of inflection points at the same frequency (~ 2000 

rad/sec) as do these two curves when the oscillator is at 

position 2. The phase angle curves for these two cases also 

show inflection points or actual phase reversals at this 
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same frequency. It is reasonable that this behavior should 

also occur with the oscillator at position 2; since at both 

locations, the response at D and E is the result of the 

perturbation propagating through the south core, coupling 

region, and north core. That this behavior occurs only at 

D and E indicates that the cause is some kind of interaction 

phenomenon between the two cores. The results obtained by 

Merritt (35) at these two oscillator positions are in good 

agreement with the results obtained here at detector posi

tions A, B, and C. However, at positions D and E with the 

oscillator at position 1, Merritt's results for the magni

tude and phase show no unusual behavior. Merritt's results 

at D and E with the oscillator at position 2 are shown in 

Figures 4 and 5, and the outstanding feature of those curves 

is the sink in the magnitude response at 2000 rad/sec. 

With the oscillator at position 3, the responses are 

similar to those of two identical, reflected slab reactors; 

since both cores are being perturbed equally instead of, as 

in the previous cases, one core being driven by the other. 

The results obtained by Merritt (35) for this case show the 

same type of behavior as the results obtained here. 
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B. Effect of Neglecting Delayed Neutrons 

and Considering l/v^ to be Negligibly Small 

The approximations of neglecting delayed neutrons and 

considering l/Vp to be zero were chosen for study, because 

at the frequency (~ 2000 rad/sec) at which the inflection 

points occur in the response curves for detector positions 

D and E, the effect of these parameters should be negligible. 

The effect of these assumptions on the UTR-10 model is to 

change Equation 23 so that 

-a ^1 =  ̂  • 

With these changes, the frequency response above 10 rad/sec 

was the same as before. 

Thus, these parameters can definitely be eliminated as 

possible causes of the unusual behavior in the response 

noted above. Also, this shows that the UTR-10 model is giv

ing results which are consistent with the expected behavior. 

C. Dependence on Neutron Energy Groups 

With the model being used in this study, the dependence 

of the frequency response on the neutron energy group can be 

checked for only the fast and slow groups. Figures 12 and 

13 show the magnitude and phase of the fast group frequency 

response at the five detector positions A-E with the 
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oscillator at position 2. Figures 8 and 9 show the cor

responding slow group responses. 

In comparing the fast and slow group responses at each 

detector position, it can be seen that at low frequencies 

the responses are generally the same, and at high frequencies 

the fast group tends to show a greater magnitude response and 

less phase shift than the slow group. A similar effect was 

found by Merritt (35), and as he pointed out, it is caused 

by the fast group's larger velocity and correspondingly 

greater attenuation length. 

The fast group magnitude response curves for detector 

positions D and E show the same kind of inflection at 

~ 2000 rad/sec as do the slow group curves. The fast group 

phase curves for these positions also show phase reversals 

at this frequency. This behavior is not surprising since 

the fast group response at these positions is caused by the 

oscillations of the slow group in the north core. This is 

so because the fast group oscillations from the south core 

are completely thermalized by the time they reach these 

positions. 

D. Dependence on Neutron Group Speeds 

The dependence of the frequency response on the neutron 

group speeds was determined to make possible another compari

son between results obtained here and those obtained by 
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Merritt (35) using the Green's function mode approximation. 

The comparison value of v^ used here and by Merritt 

(35) was 3.0 x 10^ cm/sec. With this value of v^ there was 

practically no difference in the frequency response at low-

frequencies. At high frequencies, especially at detector 

positions far from the oscillator, the use of this value of 

v-r, resulted in larger phase shifts. Merritt (35) obtained 

these same results with this value of v^. 

The comparison value of Vg used here and by Merritt 

(35) was 3.0 x 10^ cm/sec. The results obtained here and 

by Merritt (35) were that, with this higher value of Vg, 

there was less attenuation of the magnitude response and 

less phase shift. This same effect (on a larger scale) was 

found when studying the fast group response, and as noted 

there, it is caused by the greater attenuation length of 

the neutron wave perturbation. Also, with this higher value 

of Vg, the inflection point, found previously at ~ 2000 

rad/sec, in the magnitude response curves at detector posi

tions D and E with the oscillator at positions 1 or 2 

occurred at a higher frequency (~ 3500 rad/sec). This shows 

that the cause of this phenomenon is in the slow group; 

since the fast group response curves showed this behavior 

at the same frequency as the slow group response curves. 
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E. Dependence on Delayed Neutron Fraction 

Inspection of the transfer function 

A + p/A) ̂ 

which was found by Danofsky and Uhrig (14) to be applicable 

to the UTR-10 reactor with no flux tilt, reveals that if p is 

increased the p/A frequency break of the magnitude response 

curve will occur at a higher frequency and the magnitude will 

be slightly less at frequencies less than p/A. 

In order to determine whether or not the UTR-10 model 

developed here would show this effect, the value of {3 was 

increased to 0.0075. The results obtained predicted this 

effect exactly, which again shows that this model is giving 

results which are consistent with expected behavior. 

F. Effect of Coupling Region Width 

As the coupling region width was changed, the locations 

of detector positions C, D, and E were adjusted so that they 

always remained in the center of the coupling region, in the 

center of the north core tank, and 20 cm from the north core 

tank in the north reflector respectively. 

The frequency response at detector positions A and B 

showed almost no change as the coupling region width was 

changed. The magnitude and phase of the frequency response 
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at detector positions C, D, and E as the coupling region 

width was increased from 25 to 75 cm are shown in Figures 

14-19. In general, as the coupling region width increased 

there was a greater magnitude attenuation and phase shift. 

As the coupling region width increases, the inflection 

point in the magnitude response curves at detector position 

D becomes more pronounced until, at a width of 75 cm, an 

actual sink occurs. Thus, whatever is the cause, this be

havior is strongly dependent on the coupling region width. 

The magnitude response at detector position E is similar to 

that at D but is less pronounced. This indicates that the 

response at E is merely the attenuation of the effect 

originating in the north core. 
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VI. CONCLUSIONS 

As a resuit of this study, the following conclusions 

can be drawn concerning the frequency response of a reactor; 

1. The Green's function solution technique proposed 

here gives frequency response results which are 

consistent with expected behavior. 

2. The frequency response of a reactor at low fre

quencies is essentially space-independent, but it 

is very sensitive to reactor criticality. 

3. The magnitude and phase of the frequency response 

at or near the position of the oscillator exhibit 

a resonance effect at high frequencies. 

4. The frequency response shows a greater magnitude 

attenuation and phase shift as the detector is 

moved away from the oscillator. 

5. When the detector position is far from the oscilla

tor, a consistent value of the p/A frequency break 

in the magnitude response curve is obtained. 

The following conclusions apply specifically to a 

coupled-core reactor: 

1. At positions far from the oscillator, the fast-

neutron-group frequency response is dependent on 

the slow-neutron-group oscillation at that point 

instead of the fast-group perturbation from the 

oscillator. 
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A slower fast-neutron-group speed causes more 

phase shift as the detector is moved away from the 

oscillator and the frequency is increased. 

At positions far from the oscillator, the frequency 

response is strongly dependent on the coupling re

gion width. 

For a fixed oscillator position, the frequency re

sponse shows definite spatial-dependent behavior at 

the different detector positions; and at a fixed de

tector position, the frequency response shows a def

inite dependence on the oscillator position. 

With the model used in this study, inflection points 

occur in the magnitude response curves at detector 

positions D and E with the oscillator at positions 

1 or 2 at a frequency of ~ 2000 rad/sec; and these 

inflection points become more pronounced as the 

coupling region width is increased. Increasing the 

slow-neutron-group speed shifts these inflection 

points to higher frequencies, which indicates that 

the inflection is a slow-group phenomenon; and since 

the inflection points occur only at positions D and 

E, this indicates that they are caused by an inter

action between the two cores. The response at posi

tion E seems to be merely the attenuation of the 

effect originating in the north core. 
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VII. SUGGESTIONS FOR FURTHER WORK 

The following suggestions are made for possible future 

work: 

1. Extend the Green's function solution technique de

veloped here to include more neutron energy groups. 

A possible means of doing this might be to use the 

concept of a Green's matrix (11). 

2. Other parameters of the coupled-core reactor could 

be investigated for their effect on the frequency 

response, such as fuel enrichment and moderator ma

terial. Also, it would be interesting to examine 

the effects of greater coupling region widths on 

the sink effect. 

3. Develop a model specifically for determining the 

frequency response near the frequency of the mag

nitude response inflection point. 

4. Obtain experimental data to determine the spatially 

dependent frequency response at high frequencies 

(> 1000 rad/sec) in order to check the analytic 

results. 

5. Apply the Green's function solution technique de

veloped here to other reactor types, not necessarily 

only coupled-core reactors. 
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X. APPENDIX A: DESCRIPTION OF THE UTR-10 REACTOR 

The University Training Reactor-10 (UTR-10) is a light 

water moderated and cooled, graphite reflected, two-core re

actor which is licensed for operation up to a power of 10 

kilowatts. 

The reactor is fueled with about 3 kilograms of fully 

enriched uranium (greater than 93% U-235) which is approxi

mately evenly divided between the two cores. The uranium 

is arranged in fuel elements consisting of 12 aluminum-clad 

fuel plates each. There are 12 such fuel elements, which 

are positioned in two parallel core tanks (six elements in 

each tank) with the dimensions 5 in. by 20 in. by 24 in. 

These core tanks are embedded in a stack of graphite 44 in. 

by 55 in. by 48 in. and are separated by a graphite coupling 

region approximately 18 in. thick. Each core is itself sub-

critical, and criticality is achieved only by the exchange 

of neutrons between the cores through the coupling region. 

Deionized light water, which serves as both coolant and 

moderator, is circulated through each fuel element. 

The reactor is controlled by varying the vertical 

position of four control rods containing boral (two safety 

rods, one shim rod, and one regulating rod) located in the 

graphite reflector adjacent to the core tanks. During nor

mal operation the safety rods are fully withdrawn, and the 

power is controlled by positioning the shim and regulating 
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rods from the control console. When the reactor is scrammed, 

shutdown is achieved by the rapid injection of the safety 

and shim rods into the reflector and the rapid drainage of 

the water from the core tanks. 

Figure A.l illustrates the relative positions of the 

various reactor components and also shows some of the 

access ports to the core region. 
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X I .  APPENDIX B: DERIVATION OF THE TWO GROUP 

EQUATIONS FOR THE UTR-10 MODEL 

To obtain the complex, two group equations for the UTR-

10 model, the method of Cohn et (12) was used. 

The basic two group diffusion equations with one group 

of delayed neutrons are (in one dimension) 

d^ 1 à 0  
DF:-2*F - Zr#P + vZfis(l-P)0s + tC = (3.1) 

ClX r 

1 90c 
- Vs + ^ I T  (B-2) 

v2fisP0s - = #§ . (B.3) 

where 

0 p  =  f a s t  n e u t r o n  f l u x  

0g = slow neutron flux 

D p  =  f a s t  d i f f u s i o n  c o e f f i c i e n t  

Dg = slow diffusion coefficient 

Zj. = fast removal cross section 

= slow absorption cross section 

V = number of neutrons per fission 

= slow fission cross section 
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P = delayed neutron fraction 

C = delayed neutron precursor density 

\ - delayed neutron precursor decay constant 

v „  =  f a s t  n e u t r o n  g r o u p  s p e e d  r 
v„ = slow neutron group speed. 

Assuming a small perturbation in 2^, 

Z. %ao - AZa , ( B . 4 a )  

then 

^Fo  ̂ '̂ ^F ' ( B . 4 b )  

0c; = 0so + A0q ' ( B . 4 c )  

and 

CQ + AC . ( B . 4 d )  

Z , gL , , and C are the steady-state values. Substi-
âO FO oO O 

tuting Equations B.4 into Equations B.l, B.2, and B.3 yields 

dx 

+ X(C^ + 
9(05-0 + A^T?) 

at 
( B . 5 )  

D 
Sdx2 S° 

( 0 = ^ + A 0 , )  -  < î a o - A 2 a ' ( I ^ S o  +  A C s )  +  ( P < v o  +  r Fo 

J_ a(e'so + A0s' 
vg at 

( B . 6 )  
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ô(C + AO 
4*5) - ^(Co+ AC) = 5t • (B-7) 

Noting that the steady-state parts of these equations sum to 

zero and assuming the product A^^A^^SO negligibly small 

results in 

+  v Z f i 3 ( l - P ) A 0 s  +  \ & C  =  _ _ _ F  ( B . 8 )  
QX F 

.2 , ÔA0e 
Ds^aCS - S^OACs + AZa^so + ^ (B.9) 

vZfigPA0g -  XAC = ^  . (B. IO)  

Considering the case where the perturbation in Z is provided 

by a neutron absorber oscillator so that A^^ can be con

sidered sinusoidal and localized to a plane in the reactor, 

A^g can be written as 

A^a = ô(x-x') lA^^le^'^^ 7 ( B . l l a )  

and thus, 

A0p = A0F(x,co)e^^^ , (B.llb) 

A0g = A0g (x,a))e^^^ , (B.llc) 

and 

A C  =  A C ( x , m ) e j ^ ^  ,  ( B . l l d )  
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where 

x' = location of oscillator in reactor, 

CD = frequency of oscillator, 

and are the complex amplitudes of A0p.' A^^s' 

and /^C respectively. Substituting Equations B.ll into Equa

tions B.8, B.9, and B.IO and dividing out the common factor 

yields 

J2 A A A. A j 

Î^F^A^f - 2j^A0F + (B.12) 

J 2 A A j (^A0^c 
Ds^;2A*s - ZaoA^S + 6(=-x')|A2a|0so+ZrA*F= 

vSfis^A^s - = jcoAC . (B.14) 

Solving Equation B.14 for A ^ and substituting into Equation 

B.12 yields 

.2 a A A § - jmA0p 
- 2^A0p + vEf^3(l-P)A0s + = — ' 

( B . 1 5 )  

Thus, the flux changes A0p and A0g can be determined by 

solving simultaneously Equations B.13 and B.15. However, 

since the UTR-10 has distinct fuel and moderator regions, 

the coefficients of A^p and A0g are variable. Thus, in order 

to retain the much simpler constant coefficient type of 
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equations, it is necessary to write a corresponding set of 

two equations pertaining only to the fuel regions and another 

set of two equations pertaining only to the moderator regions. 

In this way, solutions for the fast and slow flux changes in 

the fuel and moderator regions are obtained separately and 

then matched at the region interfaces with the continuity 

conditions on the fluxes and currents. 

Letting the subscript f denote a fuel region and the 

subscript m denote a moderator region and considering the 

oscillator to be in a fuel region, the equations for the 

f u e l  r e g i o n s  a r e  ( f r o m  E q u a t i o n s  B . 1 3  a n d  B . 1 5 )  

2 A /V A 

" ^aof^Sf •*" ® ' I 1 l^sof 

and the equations for the moderator regions, where there is 

no production of neutrons, are 
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+ ^rmA^Fm = ' 'B""' 

In order to account for neutron leakage through the top, 

bottom, and two sides of the reactor, the neutron fluxes are 

assumed to satisfy the wave equation in the y and z directions, 

Therefore, in the y direction, 

^ =0 or ^ = -B^0 ; 
dy  ̂  ̂ dy  ̂  ̂

and thus, the leakage in the y direction 

dy 

2 
is equal to -DBy0. Similarly, the leakage in the z direc-

tion is -DB^0. Thus, the total transverse leakage is 

_D(By + B^)0 = -DB^0, where B^ = B^ + B^ is the total trans

verse buckling. To account for this transverse leakage, the 

loss terras in Equations B.16-B.19 are modified as shown 

below: 

^Ff^ 2^^Ff ~ ^^rf ^Ff^t^'^^Ff v„^^Ff 
dx F 

vXZf. p. 
+  v Z f i ^ ( l - p ) A 0 s f  +  X H - J c o  =  ° ( B . 2 0 )  
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+  6(x-x' ) | A Z a f | 0 s o f  =  ° (B.21) 

^Fm^^2^^Fm" °Fm®t^^^Fin v^^^Fm ° (B.22) 

+ + ^rmA^Pm = ^ ' 

( B . 2 3 )  

With this formulation it is convenient to define "effective" 

c r o s s  s e c t i o n s ;  i . e .  

Zffe = ^rf + DpfBt ' 

^afe = Zaof + ' 

^rme " ^rm ^ ^Fm^t ' 

and 

^ame ^am  ̂ ^Sm^t 

With these definitions,Equations B.20-B.23 are the basic 

two group equations used to solve for the frequency response 

of the UTR-10. 
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X I I .  A P P E N D I X  C :  T H E  E Q U I V A L E N C E  O F  T H E  F O R M U L A T I O N  

USED IN THIS STUDY TO THE GREEN'S FUNCTION 

SOLUTION OF A FOURTH ORDER EQUATION 

To simplify the arithmetic, consider a single-region, 

homogeneous reactor having a width of d cm and having a 

localized, sinusoidal oscillator located at some position 

x' within it. The relevant two-group equations to consider 

a r e  t h e n  i d e n t i c a l  w i t h  E q u a t i o n  4 5  ( S e c t i o n  I V ) .  

+ «lA^s = ° (c.i) 

^A0s - KgA0g + + 6 (x-x') = 0 (C.2) 

The subscript f has been dropped since only a single-region 

reactor is being considered, but the terms have the same 

m e a n i n g  a s  t h e  c o r r e s p o n d i n g  o n e s  i n  E q u a t i o n  4 5 .  

Solving Equation C.I for A0g yields 

• (C.3) 

Substituting Equation C.3 into Equation C.2 and simplifying 

yields 

4 a 2 A /V 
^A^f - + + (K^K^ -%H2)A0F " H^6(x-x') = 0. 

( C . 4 )  
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Equation C.4 is a fourth-order differential equation which 

can be solved by the Green's function technique outlined in 

S e c t i o n  I I .  

The first condition on the Green's function requires 

4 2 
- ^ G  -  ( K ^  + K ^ ) - ^ - r G  +  ( K H K ^ - H , H _ ) G  =  0  .  ( C . 5 )  
dx4 F S 2x2 F S 1 2 

Equation C.5 can be solved by ordinary techniques (41). 

Thus, assume solutions of the form 

G^ = Ae^* , X < x' (C.6a) 

Gg = Ce^x , X > x' , (C.6b) 

where G^ and G^ are the two parts of the Green's function. 

S u b s t i t u t i n g  t h e  e x p r e s s i o n  f o r  G ^  o r  G ^  i n t o  E q u a t i o n  C . 5  

and dividing out the common factor Ae*^^ or Ce^* yields 

-  ( K p  +  K g ) a ^  +  K p K |  -  =  0  .  

Thus, 

=  1 / 2 [ ( K ^  +  K g )  + V ( K ^  +  K ^ ) ^  -  4 ( K ^ K g  -  H ^ H 2 )  ]  ,  

and the four values of a are 

1/2 

ajL = [1/2(K^ + K^) + 1/2V(K^+ Kg)^ -

( C . 7 )  
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a 2  =  ( C . 8 )  

1/2 

[ 3  =  [ 1 / 2 ( K |  +  K ^ )  -  l / 2 j ( K ^  +  K g ) ^ -  4 ( K ^ K ^  -  H ^ H g )  ]  

( C . 9 )  

cc^ — —cc 2 • (C.IO) 

These values of a are identical with those found in Section 

IV (Equations 28-31). Thus, the solutions for and 

(Equations C.6) become 

a - | X  a - X  a ^ x  a . x  
Gi = A^e + A e + A^e + A^e , x < x' (C.lla) 

a - i X  Œ p X  a o X  a ^ x  
Gg = C^e + C^e + C^e + C^e , x > x' . (C.llb) 

The relevant homogeneous boundary conditions for Equa

tion C.4 can be obtained from the homogeneous boundary con

ditions of Equations C.l and C.2. These conditions are 

A 0 p ( O )  =  0  ( C . 1 2 a )  

A 0 g ( O )  =  0  ( C . 1 2 b )  

A 0 p ( d )  =  0  ( C . 1 3 a )  

A0g(d) = 0 . (C.lBb) 

Substituting Equations C.12 into Equation C.l yields 
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2 ^ 
=  0  ,  ( C . 1 4 )  

dx^ 

and substituting Equations C.13 into Equation C.l yields 

2 . 
=  0  .  ( C . 1 5 )  

dx 

Thus, Equations C.12a, C.lSa, C.14, and C.15 are the rele

v a n t  h o m o g e n e o u s  b o u n d a r y  c o n d i t i o n s  f o r  E q u a t i o n  C . 4 .  

The second condition on the Green's function requires 

G ^ ( 0 )  =  0  ( C . 1 6 )  

d^ 
^  G ,  ( 0 )  =  0  ( C . 1 7 )  
dx2 1 

G g t d )  =  0  ( C . 1 8 )  

.2 
^  G U ( d )  =  0  .  ( C . 1 9 )  

2 

The third condition on the Green's function requires 

G ^ ( x ' )  =  G g C x ' )  ( C . 2 0 )  

d G , ( x ' )  d G _ ( x ' )  
-IR- = -4R- <=•"> 

d ^ G . C x ' )  d ^ G „ ( x ' )  
^ ^  .  ( C . 2 2 )  
dx^ dx^ 
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The fourth condition on the Green's function requires 

D^G (X') d^G,(x') 
^  -  = 4  = - l  .  ( C - 2 3 )  

dx^ dx 

Equations C.15-C.23 are the eight conditions needed to 

s o l v e  f o r  t h e  e i g h t  i n d e p e n d e n t  c o n s t a n t s  i n  E q u a t i o n s  C . l l .  

Applying these eight conditions to Equations C.ll yields the 

following set of simultaneous, algebraic equations: 

G ^ ( 0 )  =  +  A g  +  A g  +  =  0  ( C . 2 4 )  

2 
^  G .  ( 0 )  =  A , a ?  +  +  A ^ a ?  +  A . a ?  =  0  ( C . 2 5 )  

dx^ " 2"2 3^3 "4^4 

a-| d a-d a^^d a^d 
G g f d )  =  C ^ e  +  C ^ e  t  C ^ e  +  C ^ e  =  0  ( C . 2 6 )  

j 2  p  c c i d  p  c c p d  _  Œ ^ d  2  c c / d  
- G ^ ( d )  =  C , a T e  +  C . a ^ e  +  C ^ a ^ e  +  C . a f e  =  0  

^^2 2 ' 1"1= "^"2 3"3" 4^4 

( C . 2 7 )  

G ^ ( x ' )  -  G g f x ' )  c o r r e s p o n d s  t o  

a , x '  a - x '  a ^ x '  a . x '  a - * '  
A^e ^ + A^e + A^e + A^e = C^e + c^e 

O n x '  a . x '  
+ C^e + C^e (C.28) 

d G ^ ( x ' )  d G g t x ' )  

dx 
^ corresponds to 
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a , x '  G g X '  G g X  a . x  
A^a^e + A2Œ2G + AgOgG + A^a^e 

a . x '  a  2 %  O g X '  a , x  
*"1*^1^ + ^20-2^ + + C^a^e (C.29) 

d ^ G ^ ( x ' )  d ^ G g C x ' )  
2 = 2 corresponds to 

dx dx 

g  c e  1  X  —  C C  g X  —  C C  3 X  p  C C / X  
Aj_a^e + AgOgG + AgOge + A^aje 

o CC 1 X _ C[ gX — CC g X g ce / X 
C^a^e + CgOgG + CgOge + C^aje (C.30) 

d ^ G 2 ( x ' )  d ^ G ^ ( x ' )  
2 - 2 - -1 corresponds to 

dx dx 

2 CC 1X 2 CC 2^ 2 CC gX 2 CC j X 
C^a^e + + CgCge + C^a^e 

2 CC ^x 2 CC 2^ 2 CC 2^ 2 CC ^x 

"^1^1^ — -^2^2^ ~ ^3^3^ "" '^4*^4® " —1 • 

( C . 3 1 )  

The solution of Equations C.24-C.31 will yield unique 

values for A^-A^ and C^-C^. 

The solution for ^0^, is then [since the driving function 

i s  - H ^ & ( x - x ' ) ]  
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A#? —H^G / 

or for X < x', 

A0J. = -H^G^ , 

and for x > x', 

A0p = "^1^2 • 

From Equation C.3, the solution for A0g is: 

for X < x', 

A0Q = 2 

and for x > x', 

A0S = * 
dx 

( C . 3 2 a )  

( C . 3 2 b )  

( C . B B a )  

( C . B B b )  

The formulation used in this study also starts with 

Equations C.l and C.2. These equations can be rewritten 

in matrix form as follows. 

^ ^2 

dx 2 -

H, 

n vp" 0 " o' 

+ = 

1 

6 ( x - x ' )  0 

( C . B 4 )  

which merely returns them to the form of Equation 46. Thus, 
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the Green's function solution to Equation C.34 is identical 

t o  t h a t  o f  E q u a t i o n  4 6 ;  t h a t  i s  ( E q u a t i o n s  4 8  a n d  4 9 ) ,  

for X < x', 

= Gp^ = U^e ^ + Ugc"^ + U^e ^ + U^e"* (C.35a) 
a 2^ a 2^ ccgX 

a - i X  a  X  a  X  a ^ x  
/\0g = Gg^= S^U^e + SgUgG ^ + SgU^e + S^U^e ^ ,(C.35b) 

and for x > x', 

a - i X  a ^ x  a / X  
A0p = Gp2 = V^e ^ + V^e + V^e + V^e ^ (C.36a) 

a - i X  a ^ x  C q X  a ^ x  
A0g = Ggg = S^V^e + SgV^e ^ + S^V^e ^ , (C.36b) 

where the values of a are identical with Equations C.7-C.10 

a n d  S ^ - S ^  a r e  t h e  c o u p l i n g  c o e f f i c i e n t s  ( E q u a t i o n  3 3 )  

- a? 
S .  =  ,  i  =  1 , 2 , 3 , 4  .  ( C . 3 7 )  
1 

Equations C.35 and C.36 fulfill the first condition on the 

Green's function. 

Continuing with the method as proposed in this study, 

the second condition on the Green's function requires 

G p ^ ( O )  =  0  ( C . 3 8 )  

G g ^ ( O )  =  0  ( C . 3 9 )  
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G p g t d )  =  0  ( C . 4 0 )  

G g g t d )  =  0  .  ( C . 4 1 )  

The third condition on the Green's function requires 

G p ^ ( x ' )  =  G p 2 ( x ' )  ( C . 4 2 )  

G g ^ ( x ' )  =  G g g f x ' )  •  ( C . 4 3 )  

The fourth condition on the Green's function requires 

 ̂̂  = 0 'C.44) 

dGg2 dGg, 
-sr - -# = • (c-45) 

Equations C.38-C.45 are the eight conditions needed to 

s o l v e  f o r  t h e  e i g h t  i n d e p e n d e n t  c o n s t a n t s  i n  E q u a t i o n s  C . 3 5  

a n d  C . 3 6 .  A p p l y i n g  t h e s e  e i g h t  c o n d i t i o n s  t o  E q u a t i o n s  C . 3 5  

and C.36 yields the following set of simultaneous, algebraic 

equations : 

G p i ( O )  =  +  U 3  +  =  0  ( C . 4 6 )  

G g ^ ( O )  r r  +  S g U g  ^  S g U g  f  =  0 .  (c.47)  

Substituting the values of the into Equation C.47 yields 

-  a i  ^  -  « 2  -  G 3  ^  -  « 4  
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Simplifying Equation C.48 yields 

UiaJ + UgGg + UgGg + = 0 . (C.49) 

a - j d  a « d  c c g d  c c / d  
G p g f d )  =  V ^ e  +  T / g G  +  V g e  +  V ^ e  = 0  ( C . 5 0 )  

a - , d  C p d  a ^ d  a  , d  
G g g t d )  =  S ^ v ^ e  " •  +  S g V ^ e  ^  +  S ^ v ^ e  +  S ^ V ^ e  ^  =  0  .  ( C . 5 1 )  

Substituting the values of the S^ into Equation C.51 and 

simplifying the result yields 

N CC-] ̂  G (I RY CC G 
Via^e ^ + VgOge "= + V^a^e + V^a^e = 0 . (C.52) 

G p ^ ( x ' )  =  G p 2 ( x ' )  c o r r e s p o n d s  t o  

a , x '  a ? x '  a o X '  O / X '  
U^e + U^e ^ + U^e + U^e 

a , x '  a ? x '  O o X '  a . x '  
V^e + V^e ^ + V^e + V^e ^ . (C.53) 

G g j ^ ( x ' )  =  G g g f x ' )  c o r r e s p o n d s  t o  ( a f t e r  s u b s t i t u t i n g  f o r  t h e  

S^ and simplifying) 

o C11 X _ OC ^X g CC gX g 3 / X 
U^ccje + Ugdge ^ + U^a^e ^ + ^4® 

2  2  ^ 2 ^  2  ^ 3 ^  2  ° ^ 4 ^  
V^a^e + Vgd^e ^ + ^^«3® + V^cc^e ^ . (C.54) 
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d G  ( x ' )  d G  ,  ( x ' )  
dx ~ dx ~ ^ corresponds to 

a , x '  a . x '  a . x  a , x  
^1^1® ^ ^ Vga^e + V^a^e 

O n X  a ? x  a . x  a . x  
- ^2^2® -Uga^e - U^a^e ^ =0 .(C.55) 

d G g  ( x ' )  d G g , ( x ' )  
d x  ~  d x  = - 1  c o r r e s p o n d s  t o  ( a f t e r  s u b s t i t u t i n g  

for the and simplifying) 

N CC1 ̂  O CC O CCO^ Q CC/X 
Vj^a^e + Vga^e ^ + V^a^e + V^a^e ^ -

3 CC-| ̂  O GC 3 CCO^ 3 
U^a^e - UgOgG - UgGge - U^a^e ^ . (C.56) 

This set of equations. Equations C.46, C.49, C.50, C.52-

C . 5 6 ,  i s  i d e n t i c a l  i n  f o r m  t o  t h e  s e t  -  E q u a t i o n s  C . 2 4 - C . 3 1  -

e x c e p t  t h a t  E q u a t i o n  C . 3 1  d i f f e r s  f r o m  E q u a t i o n  C . 5 6  b y  a  

multiplicative factor of -H^. This means that the set of 

constants and (i = 1,2,3,4) will differ from the set 

of constants and C^ (i = 1,2,3,4) by only a multiplicative 

factor of 

Following the formulation in this study, for x < x', 

A0p - '^Fi ' (C.57a) 

and for x > x', 

— Gp2 ' (C.57b) 
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and since = -H^G^ and G^^ = - H^Gg, the values for ^0^ 

found here are identical to those found from solving the 

f o u r t h - o r d e r  e q u a t i o n  ( E q u a t i o n  C . 4 ) .  

Also, in this formulation, for x < x', 

a - i X  a ^ x  a ^ x  
AlZ's = Ggi = S^U^e + SgU^e + SjUje + S^U^e 

or (substituting for the ) 

-  a ?  a n X  K2  -  a 5  a , x  -  a |  a . x  

+  ,  ( C . 5 8 a )  

and similarly, for x > x', 

Kp - cc 1 3-1X Kp, - Gg apX K — a-j cc^x 
= 

K p  -  a ?  a . x  
+ ^V^e ^ . (C.58b) 

The solution obtained for /\0g from the fourth-order equation 

i s  ( E q u a t i o n s  C . 3 3 ) :  f o r  x  <  x ' ,  

^ 2 

or (substituting for G^ and carrying out the indicated 

operations) 
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( C . 5 9 a )  

and similarly, for x > x', 

( C . 5 9 b )  

As previously noted, the and differ from the 

and by only a multiplicative factor of Thus, if 

-H^Aj^ is substituted for in Equation C.58a and is 

substituted for in Equation C.58b, it is easily seen 

that Equations C.58 and C.59 are identical. 

Thus, the formulation used in this study is completely 

e q u i v a l e n t  t o  t h e  s o l u t i o n  o f  t h e  r e l a t e d  f o u r t h - o r d e r  d i f 

ferential equation. 


	1969
	The response of a coupled core reactor to a localized oscillation of the absorption cross section
	Walter Charles Nodean
	Recommended Citation


	tmp.1412181364.pdf.V46LP

